ml.core.state

Defines a dataclass for keeping track of the current training state.

ml.core.state.set_phase(model: Module, phase: Literal['train', 'valid', 'test']) tuple[Module, Literal['train', 'valid', 'test']][source]
ml.core.state.cast_phase(raw_phase: str) Literal['train', 'valid', 'test'][source]
class ml.core.state.State(num_epochs: int = '???', num_steps: int = '???', num_epoch_steps: int = '???', num_samples: int = '???', num_epoch_samples: int = '???', num_valid_steps: int = '???', num_test_steps: int = '???', start_time_s: float = '???', elapsed_time_s: float = '???', raw_phase: str = '???')[source]

Bases: object

num_epochs: int = '???'
num_steps: int = '???'
num_epoch_steps: int = '???'
num_samples: int = '???'
num_epoch_samples: int = '???'
num_valid_steps: int = '???'
num_test_steps: int = '???'
start_time_s: float = '???'
elapsed_time_s: float = '???'
raw_phase: str = '???'
property phase: Literal['train', 'valid', 'test']
classmethod init_state() State[source]
property training: bool
num_phase_steps(phase: Literal['train', 'valid', 'test']) int[source]