ml.optimizers.adan
Wrapper around the PyTorch Adan optimizer.
- class ml.optimizers.adan.Adan(params: Iterable[Parameter] | Iterable[dict[str, Any]], lr: float = 0.001, betas: tuple[float, float, float] = (0.1, 0.1, 0.001), eps: float = 1e-08, weight_decay: float = 0.0)[source]
Bases:
Optimizer
- step(closure: Callable[[], float] | None = None) float | None [source]
Performs a single optimization step (parameter update).
- Parameters:
closure (Callable) – A closure that reevaluates the model and returns the loss. Optional for most optimizers.
Note
Unless otherwise specified, this function should not modify the
.grad
field of the parameters.
- class ml.optimizers.adan.AdanOptimizerConfig(name: str = '???', lr: float = 0.001, betas: tuple[float, float, float] = (0.1, 0.1, 0.001), eps: float = 0.0001, weight_decay: float = 1e-05, default_decay: bool = True)[source]
Bases:
BaseOptimizerConfig
- lr: float = 0.001
- betas: tuple[float, float, float] = (0.1, 0.1, 0.001)
- eps: float = 0.0001
- weight_decay: float = 1e-05
- default_decay: bool = True
- class ml.optimizers.adan.AdanOptimizer(config: BaseConfigT)[source]
Bases:
BaseOptimizer
[AdanOptimizerConfig
,Adan
]