ml.tasks.datasets.async_iterable
Defines a dataset for asynchronous iteration.
This dataclass is useful when you are trying to use Python’s async
/
await
syntax to iterate over a dataset. This just starts a separate thread
that runs the async iterator and puts the results into a queue, which is then
used to iterate over the dataset.
Example:
class MyDataset(AsyncIterableDataset):
async def __aiter__(self) -> AsyncIterator[T]:
for i in range(10):
yield i
for i in MyDataset():
print(i)
- async ml.tasks.datasets.async_iterable.add_to_queue(async_iter: AsyncIterator[T], q: Queue[T | None]) None [source]
- ml.tasks.datasets.async_iterable.thread_worker(async_iter: AsyncIterator[T], q: Queue[T | None]) None [source]