ml.lr_schedulers.linear
Defines a linear warmup and decay learning rate scheduler.
This scheduler first warms up some number of steps, then smoothly decays until the end of training.
- class ml.lr_schedulers.linear.LinearLRSchedulerConfig(name: str = '???', warmup_steps: int = '???', total_steps: int = '${task.max_steps}', warmup_percent: float = 0.01, min_scale: float = 0.0001, decay: bool = True)[source]
Bases:
BaseLRSchedulerConfig
- warmup_steps: int = '???'
- total_steps: int = '${task.max_steps}'
- warmup_percent: float = 0.01
- min_scale: float = 0.0001
- decay: bool = True
- classmethod resolve(config: LinearLRSchedulerConfig) None [source]
Runs post-construction config resolution.
- Parameters:
config – The config to resolve